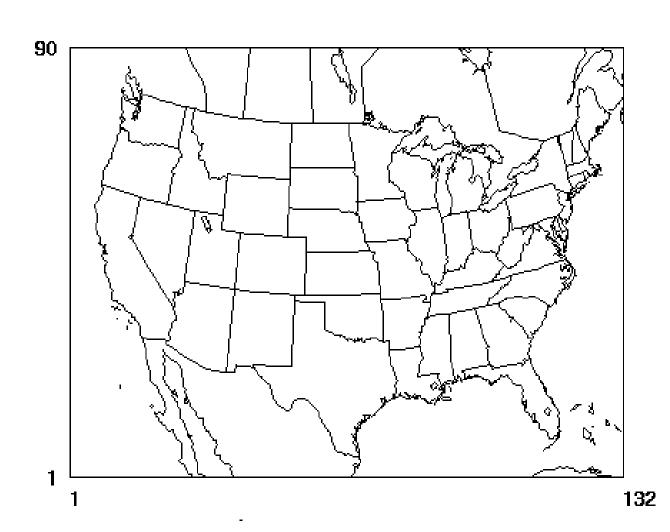
Development of an Anthropogenic Emissions Inventory for Annual, Nationwide Models-3/CMAQ Simulations of Ozone and Aerosols

Presented by Norm Possiel, U.S. EPA Co-authored by G. Stella, R. Ryan, T. Pace, W. Benjey, A.Beidler, E. Kinnee, M. Houyoux, and Z. Adelman

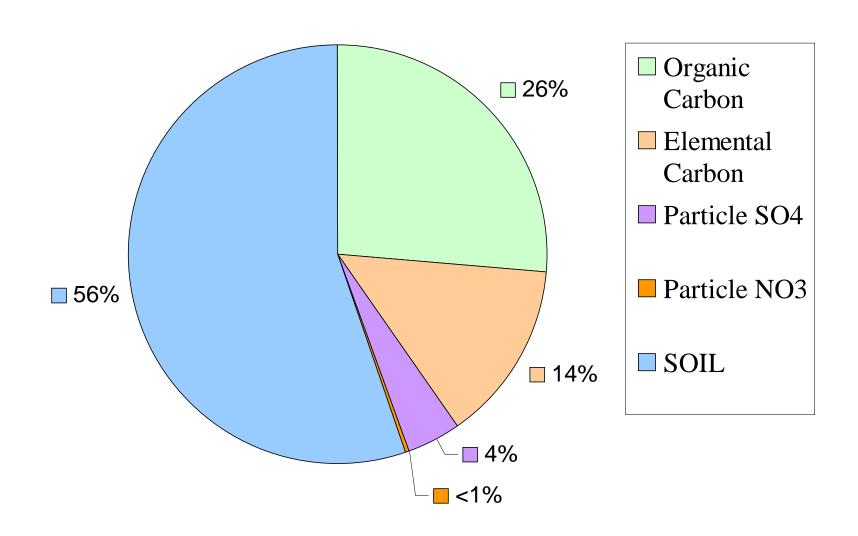

Introduction

- EPA is examining the feasibility of using the Community Multiscale Air Quality (CMAQ) Model for "one atmosphere" modeling in support of regulatory programs
 - Annual applications over a nationwide domain for 1996
 - Emissions are needed to simulate ozone, primary and secondary aerosols, acid deposition, and visibility

Overview of Presentation

- Base Emissions Inventory
- Special Considerations for Modeling Aerosols
- New Emissions-Modeling Techniques
- Enhanced Emissions QA Reports

Nationwide CMAQ Domain


Base Emissions Inventory

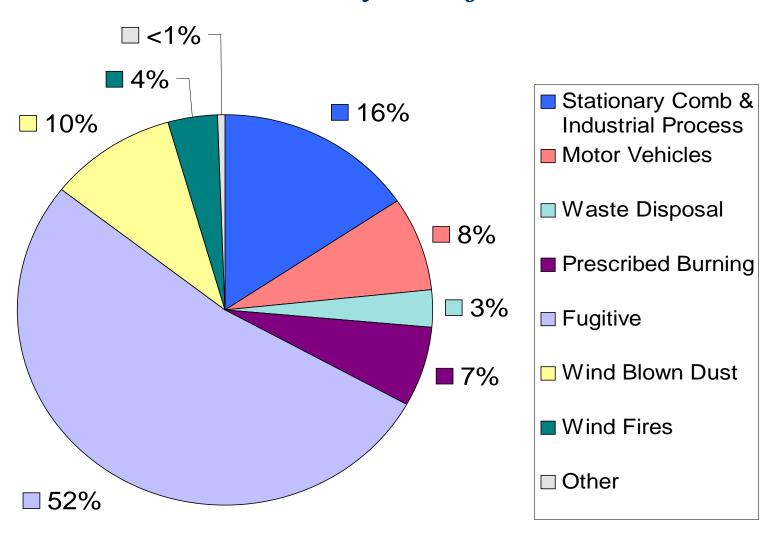
- 1996 NEI v3.11 for U.S.
- Annual point/area/nonroad emissions
 - VOC, NOX, SO2, CO, PM2.5, PM10, NH3
- Monthly mobile from Heavy-Duty Engine Rule
 - Mobile5b -> "Mobile6-like" adjustments
- 1995 Canadian E/I (no point source data)

Emissions Modeling Tool

- Sparse Matrix Operator Kernel Emissions (SMOKE) Model used to generate:
 - Hourly, gridded (36 x 36 km) model-ready emissions
 - CB-IV VOC speciation & PM2.5 species

PM2.5 Emissions Species

Special Considerations for CMAQ Modeling

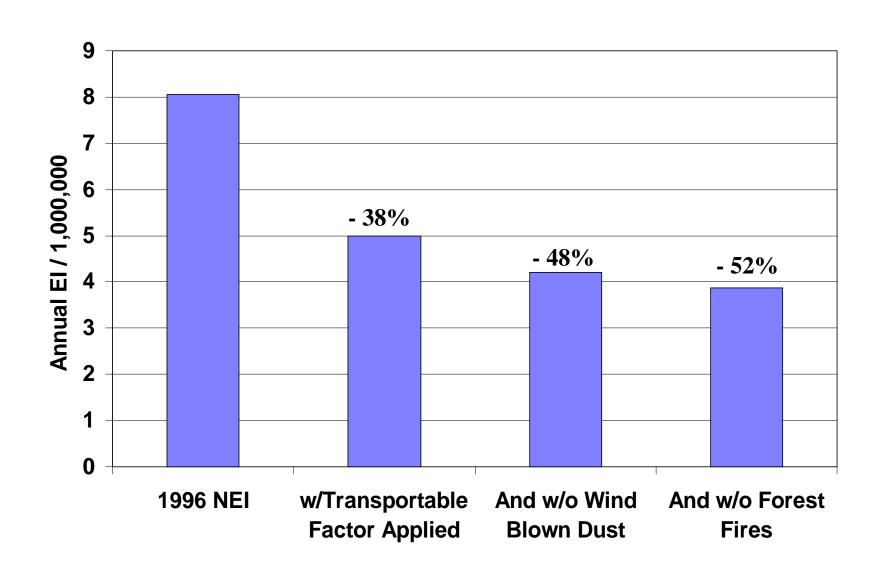

Fugitive Particulate Emissions

Wild Fires

Wind Blown Dust

Animal Husbandry and Fertilizer NH3 Emissions

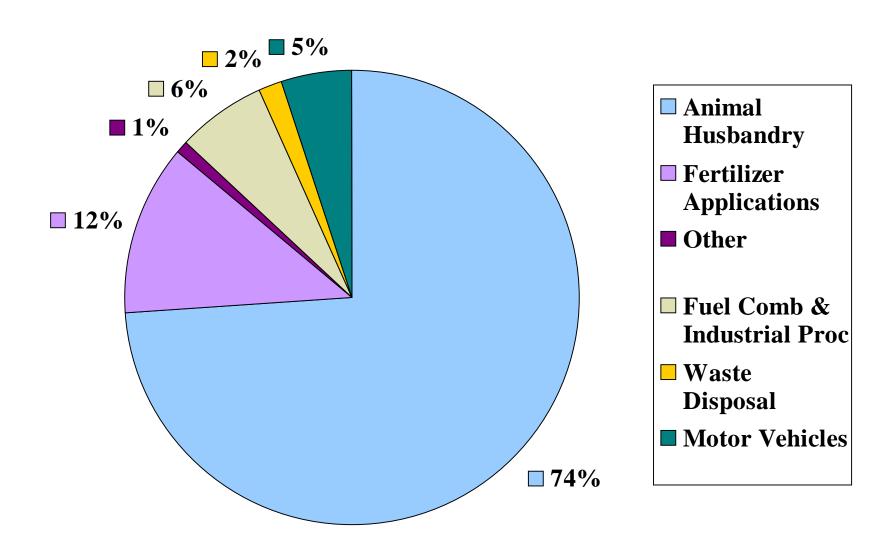
PM2.5 Emissions -Percent by Major Sector -


Special Considerations for CMAQ Modeling (continued)

- Fugitive Particulate Emissions
 - "Non-transportable" component of PM
 - portion of fugitive PM that settles out or impacts vegetation in vicinity of source
 - Fugitive PMCoarse and PM2.5 reduced by 75%
 - Paved Roads
 - Unpaved Roads
 - Unpaved Airstrips
 - Agriculture Production
 - Construction

Special Considerations for CMAQ Modeling (continued)

- Wind Blown Dust and Wild Fires
 - Difficult to take annual total emissions and determine when emissions actually occurred during the year
 - For this application, emissions from these categories were excluded from model simulations


PM2.5 Emissions (tons)

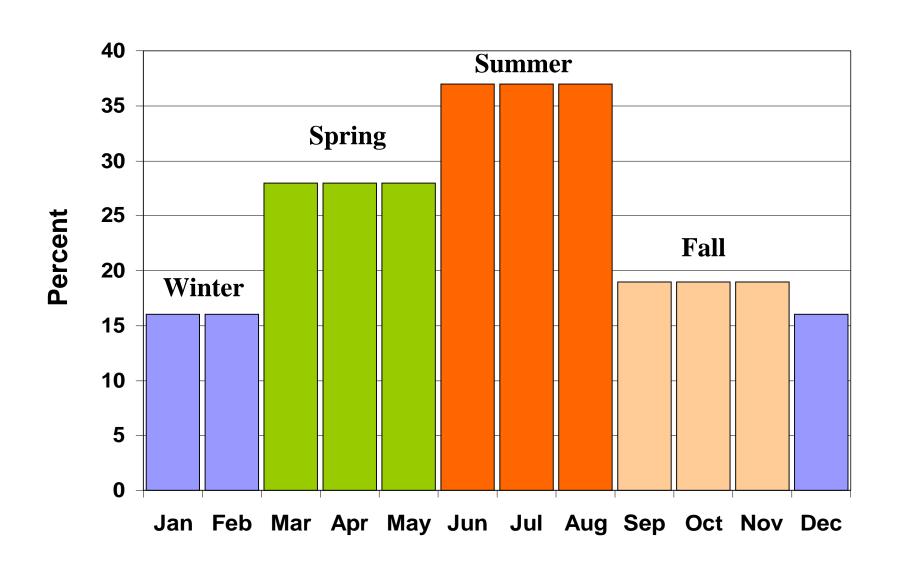
Special Considerations for CMAQ Modeling (continued)

Animal Husbandry and Fertilizer NH3 E/I

NH3 Emissions - Percent by Major Sector-

Special Considerations for CMAQ Modeling

(continued)


- Animal Husbandry and Fertilizer NH3 E/I
 - Annual NH3 emissions had been allocated uniformly, 25% in each season
 - Seasonal profiles were used in this study to improve characterization of NH3 emissions
 - Emissions from lagoons, housing, fields sensitive to temperature and moisture
 - Emissions from fertilizer applications also sensitive to when fertilizer is applied to soil

Seasonal Distribution of NH3

Source Category	Winter	Spring	Summer	Fall
Animal Husbandry	15%	25%	40%	20%
Fertilizer Application	10%	50%	30%	10%

Percent of NH3 By Month

(all categories combined)

New Techniques

- Gridded Surrogates for Mobile Emis/VMT
 - Prior modeling used population to grid emissions/VMT for all roadway types except interstates
 - New Method
 - Mobile emissions/VMT broken out into six roadway types (urban/rural classes for primary, secondary and local roads) using TIGER roadway links and urban/rural area designations

New Techniques (continued)

- Estimation of Sulfuric Acid Vapor Emissions
 - Previously, SOX emissions were speciated as 97% SO2 and 3 percent gaseous sulfate (sulfuric acid)
 - However, SO2 (not SOX) is generally reported in the NEI.
 - New method was developed to estimate gaseous sulfate based on the fractions of sulfur emitted as SO2 and as gaseous sulfate

New Techniques

(continued)

- New method assumes that that gaseous sulfate emissions are primarily H2SO4
- $H2SO4 = SO2 \times R1 \times R2$
 - R1 = ratio of sulfur emitted as sulfate to that emitted as SO2
 - R2 = ratio of molecular wgts of H2SO4 to SO2
- H2SO4 calculated by fuel type for certain combustion sources

Fraction of Sulfur Emitted as SO2 and Gaseous Sulfate

Fuel Type	Fraction	Fraction	Remaining
	SO2	Gaseous	(ash)
		Sulfate	
Bituminous Coal	0.950	0.014	0.036
Sub-Bituminous Coal	0.875	0.014	0.111
Lignite Coal	0.750	0.014	0.236
Residual Oil	0.990	0.010	0.000
Distillate Oil	0.990	0.010	0.000

Enhanced SMOKE QA Reports

 User-defined reports can be generated before/after the major steps in emissions processing (i.e. import, temporal, spatial, speciation, and merge)

 Reports available in printable format or for import into spreadsheets

Enhanced SMOKE QA Reports

(continued)

- Reports can be created by:
 - country, state, county, grid cell
 - geographic groupings
 - annual, daily, hourly
 - major category (area, mobile, point)
 - road class or 10-digit SCC
 - individual source for point sources (plant name and stack parameters)
 - elevated or only Plume-in-Grid point sources
 - pollutant species (mass or moles)
 - spatial surrogate for area and mobile sources

Conclusions

- For regional/national aerosol modeling....
 - Need to consider potential inconsistencies between annual mass inventories and the nature of the model application
 - Using mass emissions for fugitive categories could greatly overestimate what is transported beyond the immediate area of the source
 - Using an annual inventory makes it difficult to capture the actual occurrence of emissions for episodic or periodic source types like wind blown dust and wild fires

Conclusions

(continued)

 Additional improvements needed for temporally allocating NH3 emissions

New techniques for gridding mobile source emissions and for estimating emissions of H2SO4 may help to improve modeling results